On the Relationship of Gerbes to the Odd Families Index Theorem
نویسندگان
چکیده
The goal of this paper is to apply the universal gerbe of [CMi1] and [CMi2] to give an alternative, simple and more unified view of the relationship between index theory and gerbes. We discuss determinant bundle gerbes [CMMi1] and the index gerbe of [L] for the case of families of Dirac operators on odd dimensional closed manifolds. The method also works for a family of Dirac operators on odd dimensional manifolds with boundary, for a pair of Melrose-Piazza’s Cl(1)-spectral sections for a family of Dirac operators on even dimensional closed manifolds with vanishing index in K-theory and, in a simple case, for manifolds with corners. The common feature of these bundle gerbes is that there exists a canonical bundle gerbe connection whose curving is given by the degree 2 part of the even eta-form (up to a locally defined exact form) arising from the local family index theorem.
منابع مشابه
The Universal Gerbe and Local Family Index Theory
The goal of this paper is to apply the universal gerbe developed in [CMi1] and [CMi2] and the local family index theorems to give a unified viewpoint on the known examples of geometrically interesting gerbes, including the determinant bundle gerbes in [CMMi1], the index gerbe in [L] for a family of Dirac operators on odd dimensional closed manifolds. We also discuss the associated gerbes for a ...
متن کاملGerbes, Clifford Modules and the Index Theorem
The use of bundle gerbes and bundle gerbe modules is considered as a replacement for the usual theory of Clifford modules on manifolds that fail to be spin. It is shown that both sides of the Atiyah-Singer index formula for coupled Dirac operators can be given natural interpretations using this language and that the resulting formula is still an identity.
متن کاملNonholonomic Gerbes, Riemann–lagrange Spaces, and the Atiyah–singer Theorems
In this paper, nonholonomic gerbes will be naturally derived for manifolds and vector bundle spaces provided with nonintegrable distributions (in brief, nonholonomic spaces). An important example of such gerbes is related to distributions defining nonlinear connection (N–connection) structures. They geometrically unify and develop the concepts of Riemann–Cartan manifolds and Lagrange–Finsler sp...
متن کاملThe Index Gerbe
Given a family of Dirac-type operators on an odd-dimensional closed manifold, we construct an abelian gerbe-with-connection whose curvature is the three-form component of the Atiyah-Singer families index theorem.
متن کاملGravitational anomalies, gerbes, and hamiltonian quantization
In ref.[1], Schwinger terms in hamiltonian quantization of chiral fermions coupled to vector potentials were computed, using some ideas from the theory of gerbes, with the help of the family index theorem for a manifold with boundary. Here, we generalize this method to include gravitational Schwinger terms.
متن کامل